
1

Numpy multidimensional arrays
By examples

jean-claude.feltes@education.lu

Creation:

import numpy as np
a = np.array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])

Dimension and shape:
print (a.ndim)
print (a.shape)
print (a.size)

2
(3, 4) # 3 rows, 4 columns
12 # 12 elements

First dimension: rows, second dimension: columns

Reshape:
b = a.reshape(4,3)
print(b)

[[1 2 3]
 [4 5 6]
 [7 8 9]
 [10 11 12]]

This might not be what you wanted

The reference trap:
c = a
c[0,0] = 314
print(a)
print(c)

[[314 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]
[[314 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]

Setting one or more elements of the copy c to new values, changes not only the copied array c, but
also the original array a.
Take care:
The arrays a and c reference the same array, after c = a.
So if an element of c is changed, the same element of a is also changed.
(This is true for other kinds of lists also, in general for mutable objects)

If you do not want this, use the copy function:
c = a.copy()
c[0,0] = 512
print(a)
print(c)

[[314 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]
[[512 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]

(Remember that a[0,0] was changed in the previous example)

mailto:jean-claude.feltes@education.lu

2

Indexing and slicing

Remember that all indexing starts with 0!
So the 2nd row for example has index 1.

Let’s begin with the same matrix a:
import numpy as np
a = np.array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])

Get the second row:

b = a[1]
print(b)

[5 6 7 8]

Get the last row:

c = a[-1] [9 10 11 12]

Get the element in the 3rd row and 2nd column:

d = a[2, 1] 10

Indexing goes by [row, column]

 By the way, another valid syntax would be d = a[2][1]

Get the 3rd column:

e = a[:, 2] [3 7 11]

Indexing goes by [row, column] and “:” means: all in this, so all rows of column 2

Get a submatrix consisting of 2nd and 3rd columns:

f = a[:, 1:3] [[2 3]
 [6 7]
 [10 11]]

This gives all rows of the columns with index 1 and 2 (remember that “1:3” means
“from 1 to 3-1=2” !
(as 1:3 includes 1, but excludes 3, one of the weirdnesses of Python)

3

Floating point arrays

The integer trap:

All the above examples were done with integers. Numpy has looked at the defined array a and
found it all integers, so the resulting arrays also were integer arrays.

Even an assignment like

a[0,0] = 3.14

would not change the type of the array, the result would be a cast of 3.14 to the ineger value 3.

Defining a floating point array:

import numpy as np
a = np.array([[3.14, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])
print(a)

[[3.14 2. 3. 4.]
 [5. 6. 7. 8.]
 [9. 10. 11. 12.]]

Even if only one element is a floating point number, Numpy sets all elements to floating point, as
can be seen in the result.

Other Numpy functions
Make an array from lists and / or arrays:

import numpy as np
l1 = (3.14, 2, 5)
l2 = [2, 3, 4]
l = l1, l2
print(l)
a = np.asarray(l)
print(a)

((3.14, 2, 5), [2, 3, 4])

[[3.14 2. 5.]
 [2. 3. 4.]]

Make zeros array:

one dimensional:
z = np.zeros(5)
print(z)

2 dimensional
z2 = np.zeros((2,3))
print(z2)

[0. 0. 0. 0. 0.]

[[0. 0. 0.]
 [0. 0. 0.]]

Make an array of evenly spaced numbers:

Example: 5 values between 2 and 3

l = np.linspace(2,3,5) [2. 2.25 2.5 2.75 3.]

4

Operations on arrays
Operations are done element wise.

import numpy as np
a = np.array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])
b = a * 2
print(b)

c = a + b
print(c)

[[2 4 6 8] #b
 [10 12 14 16]
 [18 20 22 24]]

[[3 6 9 12] #c
 [15 18 21 24]
 [27 30 33 36]]

This is also true for multiplication and division.

Functions can directly operate on arrays:

d = np.sin(a)
print(d)

[[0.84147098 0.90929743 0.14112001 -0.7568025]
 [-0.95892427 -0.2794155 0.6569866 0.98935825]
 [0.41211849 -0.54402111 -0.99999021 -0.53657292]]

Calculations with constants are also done elementwise:

e = a + 5
print(e)

[[6 7 8 9]
 [10 11 12 13]
 [14 15 16 17]]

Mathematical Matrix operations
Matrix multiplication → dot function

import numpy as np
a = np.array([[1, 2],
 [3, 4]])

b = np.array([[5, 6],
 [7, 8]])

c = np.dot(a,b)
print(c)

[[19 22]
 [43 50]]

	Numpy multidimensional arrays
	Indexing and slicing
	Floating point arrays
	Other Numpy functions
	Operations on arrays
	Mathematical Matrix operations

