
uPy_WiFi_02.odt                                                                                                                                             1  

MicroPython and WiFi part 2
By jean-claude.feltes@education.lu

Thonny is used as IDE for all examples, see
http://staff.ltam.lu/feljc/electronics/uPython/ESP8266&uPython_01.pdf

2.1. The WiFi connection

The best way is to use the mini library wifi_connect.py described in part 1, available here:

http://staff.ltam.lu/feljc/electronics/uPython/wifi_connect.py

With this we can connect to an existing WiFi network or create our own accesspoint.
Copy the file to the ESP file system.

Let’s say we want an accesspoint.
To do this at boot time we put the following code into main.py:

from wifi_connect import *
ssid = 'MicroPython-AP'
password = '123456789'
ip = '192.168.179.1'
ip = create_accesspoint(ssid, password, ip)
print(ip)

The main.py file is executed at boot time and we get a message over the serial connection in Thonny:

Setting ipinfo  ('192.168.179.1', '255.255.255.0', '192.168.179.1', '8.8.8.8')
Access point ready!
('192.168.179.1', '255.255.255.0', '192.168.179.1', '8.8.8.8')
192.168.179.1

From now on the accesspoint is ready to be connected by a PC, a tablet or a phone.

We can test with ping from the command line:

 ping 192.168.179.1
PING 192.168.179.1 (192.168.179.1) 56(84) bytes of data.
64 bytes from 192.168.179.1: icmp_seq=1 ttl=255 time=56.2 ms
64 bytes from 192.168.179.1: icmp_seq=2 ttl=255 time=1.52 ms
. . . 

All the following examples assume that a WiFi connection is set up in the main.py file at boot time.

http://staff.ltam.lu/feljc/electronics/uPython/ESP8266&uPython_01.pdf
http://staff.ltam.lu/feljc/electronics/uPython/wifi_connect.py


uPy_WiFi_02.odt                                                                                                                                             2  

2.2. The MicroWebserv library

There are several web server libraries.

I used the one by Jean-Christophe Bos available here:

https://github.com/jczic/MicroWebSrv

There are some nice tutorials:

https://www.rototron.info/raspberry-pi-esp32-micropython-web-server-tutorial/

https://www.youtube.com/watch?v=xscBwC1SrF4

As described in the installation guide, we should copy microWebSrv.py tho the root folder of the ESP 
file system. Jean-Christophe suggests to create a folder ‘/www’ in the ESP file system, where the 
HTML, CSS and Javascript files we need to display a webpage can be created or copied.

In Thonny, we can create a new folder by klicking on the small button to the right of “MicroPython 
device”:

We can change to this folder by klicking it in the file menu or by “magic command” %cd www in the 
shell window.

To come back to the upper folder, use %cd .. in the shell window.

2.3. An absolutely minimalistic file server
from microWebSrv import MicroWebSrv
 print("Starting server")
srv = MicroWebSrv(webPath='www/')
srv.Start()

This bit of code is enough to allow viewing or downloading of files from the www folder on the ESP.

(Not all files though, but text files, PDF, HTML etc., see documentation)

https://www.youtube.com/watch?v=xscBwC1SrF4
https://www.rototron.info/raspberry-pi-esp32-micropython-web-server-tutorial/
https://github.com/jczic/MicroWebSrv


uPy_WiFi_02.odt                                                                                                                                             3  

2.4. Hello from the server

The following example is the “Hello world” of the server.

It responds to a HTML request:

from microWebSrv import MicroWebSrv

htmlstring = '<h1>HELLO from Web server !</h1>'

def _httpHandlerDHTGet(httpClient, httpResponse):
   
    
    httpResponse.WriteResponseOk(
        contentType = 'text/html',
        contentCharset = 'UTF-8',
        content = htmlstring
        )
    
        
routeHandlers = [ ( "/test_html", "GET",  _httpHandlerDHTGet ) ]
srv = MicroWebSrv(routeHandlers = routeHandlers)
srv.Start(threaded=False)

Here is the result:

ESP32 as access point

Server

Client

192.168.179.1/test_html

Hello from Web server



uPy_WiFi_02.odt                                                                                                                                             4  

2.5. Sending HTML pages

For bigger webpages it is better to separate the HTML data from the code.

We put a file  www/hello2.html containing the HTML text into the www folder of the ESP.
This file contains another Hello message, with style formatting:

<!DOCTYPE html>
<html>
    <head>
        <style>
             
            body {
             background-color: #FFFFB0; 
             font-family: Verdana, sans-serif; 
             font-size: 100%;
             }
            h1 {
             font-size: 200%; 
             color: red; 
             text-align: center;
             }

            p {
             color: black; 
             }
            pre {
                color: blue;
                }
        </style>
        
    </head>
    
    <body>
        <h1>Hello from server</h1>
        <p>This HTML document resides in the www folder of the ESP</p>
        <p>It is sent by the function httpResponse.WriteResponseFile</p>
        
        <pre>
            MicroWebSrv is a micro HTTP Web server that supports WebSockets, 
html/python language templating and routing handlers,
            for MicroPython (principally used on ESP32 and Pycom modules.
            Now supports all variants of Pyboard D-series from the makers of 
Micropython)
        </pre>
            

    </body>
</html> 

(Never mind, it could be any html page.)

The Python code now uses the WriteResponseFile function:

from microWebSrv import MicroWebSrv



uPy_WiFi_02.odt                                                                                                                                             5  

def _httpHandlerDHTGet(httpClient, httpResponse):
       
    httpResponse.WriteResponseFile(
        'www/hello2.html',
        contentType = 'text/html',
        )

print("Starting server")
routeHandlers = [ ( "/hello", "GET",  _httpHandlerDHTGet ) ]
srv = MicroWebSrv(routeHandlers = routeHandlers)
srv.Start(threaded=False)

The result is a bit more colorful:

2.6. Problems?

• If the py program says it cannot import MicrWebsrv, verify that you start it in the correct folder 
(‘/’). If you are currently in the www folder, the import cannot be found

• If there is any difficulty to change folders, the “magic commands” work in the Thonny shell:

    %cd www
    % cd ..

• You have the possibility to store files on the ESP device or on the computer.
Be sure to have the right version in your editor.

• When experimenting, it is a good idea to do a reset (<Ctrl>-D)  to avoid getting the error 
message ‘EADDR IN USE’.

• Always confirm that a connection exists (with ping), before looking into the server code.

2.7. Playing around …

A modified program shows info about the client and uses Threading, so other things can be done after 
starting the server:

from microWebSrv import MicroWebSrv

def print_info(httpClient):
    print()
    print (httpClient.GetRequestMethod(), ' from ',



uPy_WiFi_02.odt                                                                                                                                             6  

          httpClient.GetIPAddr(), ':', httpClient.GetPort())
    
def _httpHandlerDHTGet(httpClient, httpResponse):
       
    print_info(httpClient)
    
    httpResponse.WriteResponseFile('www/hello2.html',
        contentType = 'text/html', )
    
print("Starting server")
routeHandlers = [ ( "/", "GET",  _httpHandlerDHTGet ) ]
srv = MicroWebSrv(routeHandlers = routeHandlers)
srv.Start(threaded=True)

import time
while True:
    time.sleep(1)
    print('*', end ='')

Output after some seconds and after the server has been contacted:

Starting server

***
GET  from  192.168.179.2 : 58422
********

2.8. Switching a LED over WiFi (via HTTP request)

I’ll try to reproduce the example described here with an ESP8266 programmed in C using the Arduino 
IDE:

http://staff.ltam.lu/feljc/electronics/arduino/WiFi_01.pdf

For this I have used an ESP32 with a LED connected to IO12 (over a 470 Ohm resistance).

We have a webpage with two links for switching on or off.

  

This webpage is defined by the following HTML code:

http://staff.ltam.lu/feljc/electronics/arduino/WiFi_01.pdf


uPy_WiFi_02.odt                                                                                                                                             7  

content = """\
    <!DOCTYPE html>
         <head>
            <meta charset="UTF-8" />
            <title>Switch LED</title>
        </head>
        <body>
            <h1>Switch LED</h1>
            <p><a href = /led_on> LED on </a></p>
            <p><a href = /led_off> LED off </a></p>
            
        </body>
    </html>
    """

We define three route handler functions, one for ‘/’, one for ‘led_on’ and one for ‘led_off’.

To avoid problems we always resend the whole webpage.

This is done by the following functions:

def send_webpage(httpResponse):
    httpResponse.WriteResponseOk( headers        = None,
                                  contentType    = "text/html",
                                  contentCharset = "UTF-8",
                                  content        = content )

def _httpHandler_root(httpClient, httpResponse) :
    send_webpage(httpResponse)

def _httpHandler_on(httpClient, httpResponse) :
    led.on()
    send_webpage(httpResponse)

def _httpHandler_off(httpClient, httpResponse) :
    led.off()
    send_webpage(httpResponse)

The main program imports the web server and machine library and defines the pin for the LED.
After this, the three route handlers are defined and the server is started:

from microWebSrv import MicroWebSrv
from machine import Pin
led = Pin(12, Pin.OUT)

print('Starting server')

routeHandlers = [
    ( "/",  "GET",  _httpHandler_root ),
    ( "/led_on",  "GET",  _httpHandler_on ),
    ( "/led_off",  "GET",  _httpHandler_off ),
]



uPy_WiFi_02.odt                                                                                                                                             8  

srv = MicroWebSrv(routeHandlers=routeHandlers)
srv.Start(threaded=True)

import time
time.sleep(0.2)
print('Server started: ', srv.IsStarted())

Now we can switch the LED on and off by clicking ‘LED on’ or ‘LED off’  on the webpgage.

What about the latency?
It seems to be a little bit longer than for the C program, but I am not sure, as I did not directly compare.
Anyway, it seems too long for critical operations, like controlling a robot.

To have a better idea, I used Wireshark to analyze the transmission (using a filter to only display the 
TCP traffic on wlan0):

If I interprete this correctly, the latency would be about 370ms, which corresponds to my feeling.

 

Naturally it is possible to beautify the HTML page to have nice knobs for switching, or anything you 
want …


	MicroPython and WiFi part 2
	2.1. The WiFi connection
	2.2. The MicroWebserv library
	2.3. An absolutely minimalistic file server
	2.4. Hello from the server
	2.5. Sending HTML pages
	2.6. Problems?
	2.7. Playing around …
	2.8. Switching a LED over WiFi (via HTTP request)


