
1

Arduino notes: Serial communication
This is not a tutorial, but a collection of personal notes to remember the essentials of Arduino programming.
The program fragments are snippets that represent the essential pieces of code, in an example.
jean-claude.feltes@education.lu

Official doc on Serial

https://www.arduino.cc/reference/en/language/functions/communication/serial/

Using the hardware serial port of a Teensy

On my Computer (with Linux) the Teensy shows with two items in the Serial port menu of
Arduino:

/dev/ttyACM0 Serial (Teensy)
/dev/ttyACM0 Serial (Teensy 2.0)

Why? If someone knows, please tell me.

When debugging a sketch I had the impression that sometimes the first one worked, and
sometimes the last. Anyway, I was tired of fumbling with the serial monitor and I attached the
hardware serial port of the Teensy via a small interface to the serial port of my computer (yes, it
still has got one and sometimes I am glad it has!)

But now I would have to change all Serial statements in my program. Really?

No, a little trick helped:

#define Serial Serial1

For the compiler this replaces every „Serial“ in the program with „Serial1“, at compile time.

Line input function

In BASIC there is a very useful function that you can use like this:

Input "What is your name?", userInput

It waits until the user hits <Enter> and returns the input.

Why can‘t I find this in the Arduino library?

There are Serial.readString() and Serial.readStringUntil(), but they do not behave exactly as I
expected. There are solutions to be found in the forums that helped me build some funtions that
behave approximately like the input function.

All of them use a buffer for the string that is filled as you type, until you hit the <Enter> button.

When this happens, the receiving loop is stopped and the string is returned to the caller of the
function.

mailto:jean-claude.feltes@education.lu
https://www.arduino.cc/reference/en/language/functions/communication/serial/

2

Here is the code:

String readLine(){

 String sdata = "";
 byte ch;

 while (1){
 if (Serial.available()) {
 ch = Serial.read();

 Serial.print((char)ch); //echo
 sdata += (char)ch;
 if (ch=='\r') { // end of line on CR
 sdata.trim();
 break;
 }
 }
 }
 Serial.println();
 return sdata;
}

Some details:

• The Serial.print((char)ch) is for echoing the incoming characters back to the remote
terminal, so the user does not have to type blindly

• The Serial.println at the end is to do a line feed. Without it the cursor is moved to the
beginning of the input line.

• In contrary to what I thought at first, the <Enter> key generates a ‚\r‘ (carriage return)
and not a ‚\n‘ (line feed), at least my GTKTerm under Linux does this.
Eventually the code could be adapted to another end of input character.

The function can be used like this:

String sdata = readLine();

It is important to realize that, in contrary to the functions of the Arduino library, this funtion is
blocking, it waits until the user enters something (this was exactly what I wanted!).

But if there is no entry, the whole program is blocked. It would be good to have a function with
a timeout. This is not difficult:

String readLineWithTimeout(long timeoutms){
 String sdata = "";
 byte ch;
 long t1 = millis();

 while (1){
 if (Serial.available()) {
 ch = Serial.read();

 Serial.print((char)ch); //echo
 sdata += (char)ch;
 if (ch=='\r') { // end of line on CR
 sdata.trim();
 break;

3

 }

 }
 if (millis() - t1 > timeoutms){
 sdata.trim();
 break;
 }
 }
 Serial.println();
 return sdata;
}

The receiving loop is left if the user presses <Enter> or if a certain amount of milliseconds has
passed

It is used like this:

String sdata = readLineWithTimeout(5000);

for a timeout of 5 seconds.

The BASIC funtion allows a prompt to be passed to the function.

This can be done easily with an additional print:

String inputLine(String prompt, long timeoutms){
 Serial.print(prompt);
 return readLineWithTimeout(timeoutms);
}

It is used like this:

String sdata = inputLine("INPUT STRING:", 10000);

Clearing the input buffer

Sometimes, at program start, there is still some garbage in the input buffer.

This can be removed by this funtion:

void clearSerialInput() {
 uint32_t m = micros();
 do {
 if (Serial.read() >= 0) {
 m = micros();
 }
 } while (micros() - m < 10000);
}

(found on the net, I don‘t remember where)

	Arduino notes: Serial communication
	Official doc on Serial
	Using the hardware serial port of a Teensy
	Line input function
	Clearing the input buffer

